
### **PYTOKEH**



# Обзор применений SAT-решателей в целях криптоанализа симметричных криптографических алгоритмов

**Марина Скоробогатова,** аналитик

**Сергей Панасенко,** директор по научной работе



### Задача выполнимости КНФ

**Задача выполнимости (satisfiability problem):** существует ли набор значений True/False для переменных  $x_1, x_2, ..., x_n$  формулы  $f(x_1, x_2, ..., x_n)$ , при которых формула f истинна.

КНФ — конъюнкция дизъюнкций литералов (состоит из имён переменных, скобок и операций И, ИЛИ, НЕ

$$\mathcal{F} = (x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2)$$
 — выполнима на наборе (1, 0)

### Почему КНФ?

- Любая булева формула может быть приведена к КНФ
- Задача является NP-полной (теорема Кука)

# **Логический криптоанализ:** общая информация

- Термин введен в *F. Massacci, L. Marraro. Logical Cryptanalysis as a SAT Problem. Journal of Automated Reasoning, vol. 24, pp. 165-203,*2000
- Применение ограничено быстрым ростом количества элементов формулы в зависимости от числа кодируемых в формуле преобразований (в частности, от количества раундов блочного шифра)
- Наиболее эффективен для решения частных задач в контексте применения других видов криптоанализа

### Другое применение SAT-решателей:

- Разложение булевых матриц
- Минимизация продолжительности обработки задач (в том числе для процессоров)
- Автоматическая формальная верификация систем (model checking)
- Задачи на графах: соцсети, логистика и т.д.
- Решение игр (Судоку, Сапёр, анализ в шахматах)
- Кластеризация методом k-средних
- Автоматическая генерация тестов (ATPG)

### Логический криптоанализ: применение в криптографии

### Анализ алгоритмов блочного симметричного шифрования:

- поиск секретного ключа (атаки на основе известного открытого текста);
- поиск классов слабых ключей (по отношению к дифференциальному или линейному криптоанализу);
- верификация ряда криптографических свойств блочных шифров (в частности, доказательство отсутствия слабых или универсальных ключей).

### • поиск начального заполнения генератора ключевого потока.

### Анализ алгоритмов аутентифицированного шифрования:

- извлечение внутреннего состояния и раскрытие открытого текста;
- поиск секретного ключа;
- подделка аутентифицируемого сообщения.

### Анализ алгоритмов поточного шифрования и генераторов псевдослучайных последовательностей:

- поиск секретного ключа поточного шифра (атака на основе известного открытого текста);

#### Анализ функций хэширования:

- поиск прообразов;
- поиск коллизий (в том числе, путем поиска дифференциального пути с помощью SAT-решателя для последующего применения дифференциального криптоанализа).

# **Логический криптоанализ:** основная идея

- Описанные криптографические задачи сводятся к задачам о выполнимости КНФ, которые впоследствии решаются при помощи существующих реализаций SAT-решателей, умеющих находить наборы выполнимости заданных КНФ.
- Для этого биты открытого текста, ключа и шифротекста представим в виде последовательностей булевых переменных Р, К и С. Каждая переменная принимает значения 1 (True) или 0 (False).
- Далее закодируем свойства криптографического алгоритма в виде булевой формулы E(P, K, C) такой, что  $E(P, K, C) = 1 \Leftrightarrow C = E_k(P)$ .
- Из выполнимости/не выполнимости формулы E(P, K, C) получаем информацию об исследуемом свойстве криптоалгоритма.

# Анализ алгоритмов блочного симметричного шифрования: поиск секретного ключа

#### **DES**

Massacci F., Marraro L. Logical cryptanalysis as a SAT problem //Journal of Automated Reasoning. — 2000. — T. 24. — C. 165-203.

Вычисление ключа шифрования на основе известного открытого текста для 3-раундового DES.

|            |         |         | rel-SAT        |                 |  |
|------------|---------|---------|----------------|-----------------|--|
|            | Tableau | SATO    | С<br>обучением | Без<br>обучения |  |
| Раунды     | 2       | 3       | 3              |                 |  |
| Блоки      | 4       | 8       | 8              |                 |  |
| Успешность | 100%    | 50%     | 100%           |                 |  |
| Биты ключа | 56      | 56      | 56             |                 |  |
| Время      | 36.43   | 2192.73 | 75.03          | 164.792         |  |

### SIMON32/64 (низкоресурсный)

Е. А. Маро, О. С. Заикин. Алгебраический криптоанализ 9 раундов низкоресурсного блочного шифра SIMON32/64. Труды XXII Международной конференции «Сибирская научная школа-семинар «Компьютерная безопасность и криптография» — Sibecrypt'23» им. Г. П. Агибалова, с. 65-70, 2023.

Вычисление ключа шифрования в предположении, что известны первые 16 бит ключа для 9 раундов SIMON-32/64.

SAT-кодировка 9-раундовой версии потребовала формирования 144 квадратичных уравнений со 176 переменными.

Прогноз 100% решения задачи для пары случайных открытых текстов:

- ~151ч для ключа (0xb2fe,0x7c97,0xa734,0x8a7f)
- ~94ч для ключа (0xe5e1,0x3e5c,0xfe34,0x7a47)
- ~73ч для ключа (0xd8a6,0x28f0,0x4c35,0xac81)

# Анализ алгоритмов блочного симметричного шифрования: поиск слабых ключей

#### Поиск классов слабых ключей

Верификация криптографических свойств

F. Lafitte, J. Nakahara Jr., D. Van Heule. Applications of SAT Solvers in Cryptanalysis: Finding Weak Keys and Preimages. Journal on Satisfiability, Boolean Modeling and Computation, vol. 9, pp. 1-25, 2014.

Найдены классы слабых 512-битных ключей для 8.5-раундового блочного шифра WIDEA-4 и 1024-битных ключей для 8.5-раундового блочного шифра WIDEA-8.

Использование данных ключей существенно повышает вероятность успеха проведения атаки отличимости шифротекста (distinguishing attack) и атаки восстановления ключа (key recovery attack).

Доказано отсутствие классов слабых ключей для MESH-64(8).

F. Massacci, L. Marraro. Logical Cryptanalysis as a SAT Problem. Journal of Automated Reasoning, vol. 24, pp. 165-203, 2000.

Приведены примеры булевых формул для различных задач криптоанализа и верификации криптографических свойств блочных шифров (в частности, DES):

- кодирование сети Фейстеля
- кодирование перестановок
- кодирование S-боксов и др.

# Анализ алгоритмов аутентифицированного шифрования

F. Lafitte, L. Lerman, O. Markowitch, D. Van Heule. SAT-based cryptanalysis of ACORN. Report 2016/521, Cryptology ePrint Archive, 2016.

# Для версий v1, v2 AEAD-алгоритма ACORN успешно проведены следующие атаки с использованием SAT-решателя Cryptominisat:

- извлечение внутреннего состояния (state recovery attack)
- получение секретного ключа по внутреннему состоянию и открытому тексту (key recovery attack)
- нахождение коллизий нахождение различных внутренних состояний, приводящих к одинаковому значению тэга (state collision attack)
- подделка аутентифицируемого сообщения (forgery attack)

Позже была описана 3 версия алгоритма ACORN, для которой данные атаки невыполнимы:

ACORN: A Lightweight Authenticated Cipher (v3). Designer and Submitter: Hongjun Wu, Division of Mathematical Sciences Nanyang Technological, University 2016.09.15

# **Анализ алгоритмов поточного шифрования и ГПСЧ**

О. Заикин. SAT-криптоанализ криптографических хэш-функций и поточных шифров. Лекция в БФУ им. И. Канта, 2023.

Атаки на генератор ключевого потока A5/1 (используется для шифрования трафика в стандарте мобильной связи GSM):

- поиск секретного ключа поточного шифра
- поиск начального заполнения генератора

Для определения начального заполнения ключевого потока при известных значениях 31 из 64 битов внутреннего состояния с помощью модифицированного SAT-решателя Minisat-C достаточно 114 бит ключевого потока. Решение задачи занимает 0.2 секунды.

### Анализ хэш-функций: поиск прообраза

### SHA-1

Motara Y. M., Irwin B. V. W. SHA-1, SAT-solving, and CNF. — 2017.

Нахождение прообраза для полнораундовой хэш-функции SHA-1, имеющей до 20 свободных битов (остальные биты зафиксированы)

| Свободных<br>битов | SAT-решатель        | Время<br>(c) |  |
|--------------------|---------------------|--------------|--|
|                    | Glucose             | 135.6        |  |
| 16                 | Plingeling          | 25.8         |  |
|                    | CryptoMiniSat       | 256.1        |  |
| 10                 | Glucose             | 403.6        |  |
| 18                 | Plingeling          | 82.7         |  |
| 20                 | Glucose             | 227.8        |  |
| >20                | Слишком длинная КНФ |              |  |

РусКрипто'2019 (Маршалко, Мхитарян): поиск прообраза для 2-раундовой функции Стрибог с 20 свободными битами.

#### **KECCAK**

Morawiecki P., Srebrny M. A SAT-based preimage analysis of reduced Keccak hash functions //Information Processing Letters. – 2013. – T. 113. –  $\mathbb{N}^{Q}$ . 10-11. – C. 392-397

- Найдены прообразы для 3-раундовой хэш-функции КЕССАК.
- Показано, что полнораундовая хэш-функция КЕССАК не подвержена атакам поиска прообраза.
- Для построения КНФ была использована утилита CryptLogVer.

|                   | Paawon      |                              | Dooren                  | Время (с)            |                 |
|-------------------|-------------|------------------------------|-------------------------|----------------------|-----------------|
| Функция           | Раунд<br>ов | Размер<br>сообщения<br>(бит) | Размер<br>хэша<br>(бит) | SAT-<br>реша<br>тель | Брут-<br>форс   |
| KECAAK[1024, 576] | 3           | 24                           | 1024                    | $2^0$                | $2^1$           |
| KECAAK[1024, 576] | 3           | 32                           | 1024                    | $2^{3,3}$            | 2 <sup>9</sup>  |
| KECAAK[1024, 576] | 3           | 40                           | 1024                    | $2^{10,8}$           | 2 <sup>17</sup> |
| KECAAK[120,80]    | 3           | 24                           | 80                      | $2^{2,5}$            | $2^{-2,9}$      |
| KECAAK[120,80]    | 3           | 32                           | 80                      | $2^{5,7}$            | 2 <sup>5</sup>  |
| KECAAK[120,80]    | 3           | 40                           | 80                      | $2^{15,7}$           | $2^{13}$        |

# Анализ хэш-функций: поиск прообраза

В.В.Давыдов и др. SAT-криптоанализ криптографических хэш-функций BLAKE и GROESTL. // Летняя школа-конференция «Криптография и информационная безопасность» 2023. Сборник тезисов, с. 59-65

- 12-ядерный процессор AMD Ryzen 3900X
- Версия СВМС 5.89

#### **BLAKE-256**

| Число   | Время нахождения прообраза (с) |                           |  |  |
|---------|--------------------------------|---------------------------|--|--|
| раундов | Нулевой хэш,<br>256 бит        | Единичный хэш, 256<br>бит |  |  |
| 8/64    | 0.51                           | 0.29                      |  |  |
| 9/64    | 21 596                         | 2 133                     |  |  |
| 10/64   | 8 798                          | 27 089                    |  |  |
| 11/64   | 20 004                         | 2 281                     |  |  |
| 12/64   | 11 654                         | Не решено                 |  |  |
| 13/64   | Не решено                      | Не решено                 |  |  |

- Версия kissat 3.0
- Для каждой КНФ запускался kissat на 1 ядре из 12 GROESTL

| Число                      | Время нахождения прообраза (с) |                           |  |  |
|----------------------------|--------------------------------|---------------------------|--|--|
| подраундов<br>перестановок | Нулевой хэш,<br>256 бит        | Единичный хэш, 256<br>бит |  |  |
| 10/16, 4P6Q                | 94.14                          | 50.72                     |  |  |
| 10/16, 6P4Q                | 2.13                           | 2.20                      |  |  |
| 12/16, 8P4Q                | 3                              | 2.88                      |  |  |
| 10/64, 5P5Q                | 37 641                         | 21 046                    |  |  |
| 13/16, 8P5Q                | 27 077                         | 11 780                    |  |  |

### Анализ хэш-функций: поиск коллизий

### MD4/MD5

Mironov I., Zhang L. Applications of SAT solvers to cryptanalysis of hash functions //Theory and Applications of Satisfiability Testing-SAT 2006: 9th International Conference, Seattle, WA, USA, August 12-15, 2006. Proceedings 9. — Springer Berlin Heidelberg, 2006. — C. 102-115.

Найдены коллизии для полнораундовой хэш-функции MD4, 46-раундовой MD5, 35-раундовой SHA-0. Время поиска коллизии для полнораундового MD5 (для ПК 32 GHz PIV, 1Gb RAM) может достигать порядка 100 часов.

| Хэш- В  | <b>Модифик</b><br>Всего |                  | сации | ации Формула |            |       |
|---------|-------------------------|------------------|-------|--------------|------------|-------|
| функция | раундов                 | Wang et al, 2005 | SAT   | Переменных   | Дизъюнктов | Время |
| MD4     | 48                      | 48               | 48    | 53228        | 221440     | ~500c |
| MD5     | 64                      | 22               | 46    | 89748        | 375176     | <15м  |
| SHA-0   | 80                      | 20               | 35    | 114809       | 486185     | <15м  |

#### SHA-1

О. Заикин. SAT-криптоанализ криптографических хэш-функций и поточных шифров.
Лекция в БФУ им. И. Канта, 2023.

Ha основе атаки, описанной в Stevens M. «New collision attacks on SHA-1 based on optimal joint local-collision analysis» (2013) найдены коллизии для полнораундовой хэш-функции SHA-1.

### **SAT-решатели: неполные алгоритмы**

Осуществляют поиск выполняющего набора неполным перебором пространства возможных решений. В основном используют локальный поиск (local search).

- → Приложение к другим задачам (MAXSAT)
- **—** Быстрая скорость работы
- Могут доказать только выполнимость

Selman B., Leveque H., Mitchell D. A new method for solving hard satisfiability problems //Proceedings of the tenth national conference on artificial intelligence (AAAI-92). – 1992. – C. 440-446.

McAllester D. et al. Evidence for invariants in local search //AAAI/IAAI. — 1997. — C. 321-326.

**GSAT** — основан на стохастическом локальном поиске; при обращении переменной вносится изменение, минимизирующее количество невыполненных дизъюнктов в новой формуле (с некоторой вероятностью переменная выбирается случайно).

**WalkSAT** — при обращении переменной случайно выбирается дизъюнкт, который невыполним для данного значения переменной. Внутри дизъюнкта переменная выбирается с учётом рейтинга (рейтинг переменной равен числу дизъюнктов, для которых нарушается выполнимость при изменении данной переменной).

### **SAT-решатели: полные алгоритмы**

Выполняют полный перебор. В отличие от неполных алгоритмов осуществляют доказательство невыполнимости, имеющее прикладное значение при верификации схем и автоматическом доказательстве теорем.

### **DPLL (Davis-Putnam-Logemann-Loveland)**

Davis M., Logemann G., Loveland D. A machine program for theorem-proving //Communications of the ACM. − 1962. − T. 5. − №. 7. − C. 394-397.

- GRASP
- SATO
- Chaff



Silva J. P. M., Sakallah K. A. GRASP-a new search algorithm for satisfiability //Proceedings of International Conference on Computer Aided Design. — IEEE, 1996. — C. 220-227.

**Look-ahead** 

Freeman J. W. Improvements to propositional satisfiability search algorithms.

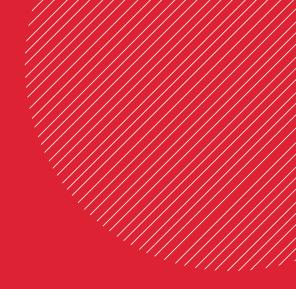
– University of Pennsylvania, 1995.

## SAT-решатели: применение

| Local search based                                                                                                                    | CDCL                                                                                                | Look-ahead                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Хорошие результаты<br>на случайных выполнимых 3-КНФ                                                                                   | Хорошие результаты<br>на индустриальных КНФ                                                         | Хорошие результаты<br>на невыполнимых КНФ                                                    |
| <ul> <li>GSAT</li> <li>WalkSAT</li> <li>CPSolver</li> <li>Stochastic Local Search<br/>Based CSP Solver</li> <li>SATenstein</li> </ul> | <ul> <li>Cryptominisat</li> <li>Minisat</li> <li>zChaff</li> <li>Glucose</li> <li>kissat</li> </ul> | <ul> <li>POSIT</li> <li>Tableau</li> <li>rel_sat</li> <li>OKsolver</li> <li>march</li> </ul> |
|                                                                                                                                       |                                                                                                     |                                                                                              |

## Подведем итоги

- SAT-криптоанализ показал себя эффективным методом анализа симметричных криптографических примитивов. К настоящему моменту он был успешно применен для решения различных задач по криптоанализу хэш-функций и блочных/потоковых шифров.
- SAT-задачи могут быть использованы также для доказательства определенных свойств криптографических алгоритмов.
- Для решения SAT-задач применяется хорошо изученный алгоритмический аппарат, позволяющий, в числе прочего, автоматизировать и распараллеливать решение задач по криптоанализу.


- Основным фактором, ограничивающим применение SAT-криптоанализа, является быстрый рост количества элементов формулы в зависимости от числа кодируемых в формуле преобразований (в частности, от количества раундов криптоалгоритма)
- Тем не менее, алгоритмы решения SAT-задач активно развиваются, можно ожидать в ближайшем будущем достижения новых значительных результатов с помощью SAT-криптоанализа.

# Вопросы



# Контактная информация





